Targeting wild-type Erythrocyte receptors for Plasmodium falciparum and vivax Merozoites by Zinc Finger Nucleases In- silico: Towards a Genetic Vaccine against Malaria
نویسندگان
چکیده
UNLABELLED BACKGROUND Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respective plasmodium species target and invade red blood cells (RBCs) by using the duffy antigen receptor for chemokines (DARC), and Sialic Acid (SLC4A1) residues of the O-linked glycans of Glycophorin A. RBCs of naturally selected duffy-negative blacks are resistant to P.vivax tropism. We hypothesized that artificial aberration of the host-pathway by target mutagenesis of either RBC -receptors, may abolish or reduce susceptibility of the host to malaria. As a first step towards the experimental actualization of these concepts, we aimed to identify zinc finger arrays (ZFAs) for constructing ZFNs that target genes of either wild-type host-RBC- receptors. METHODS In-Silico Gene & Genome Informatics RESULTS Using the genomic contextual nucleotide-sequences of homo-sapiens darc and glycophorin-a, and the ZFN-consortia software- CoDA-ZiFiT-ZFA and CoDA-ZiFiT-ZFN: we identified 163 and over 1,000 single zinc finger arrays (sZFAs) that bind sequences within the genes for the two respective RBC-receptors. Second, 2 and 18 paired zinc finger arrays (pZFAs) that are precursors for zinc finger nucleases (ZFNs) capable of cleaving the genes for darc and glycophorin-a were respectively assembled. Third, a mega-BLAST evaluation of the genome-wide cleavage specificity of this set of ZFNs was done, revealing alternate homologous nucleotide targets in the human genome other than darc or glycophorin A. CONCLUSIONS ZFNs engineered with these ZFA-precursors--with further optimization to enhance their specificity to only darc and glycophorin-a, could be used in constructing an experimental gene-based-malaria vaccine. Alternatively, meganucleases and transcription activator-like (TAL) nucleases that target conserved stretches of darc and glycophorin-a DNA may serve the purpose of abrogating invasion of RBCs by falciparam and vivax plasmodia species.
منابع مشابه
Genetic Vaccines and Therapy
Background: Malaria causes immense human morbidity and mortality globally. The plasmodium species vivax and falciparum cause over 75 % clinical malaria cases. Until now, gene-based strategies against malaria have only been applied to plasmodium species and their mosquito-vector. Merozoites of these two respective plasmodium species target and invade red blood cells (RBCs) by using the duffy ant...
متن کاملIdentifying Potential Plasmodium vivax Sporozoite Stage Vaccine Candidates: An Analysis of Genetic Diversity and Natural Selection
Parasite antigen genetic diversity represents a great obstacle when designing a vaccine against malaria caused by Plasmodium vivax. Selecting vaccine candidate antigens has been focused on those fulfilling a role in invasion and which are conserved, thus avoiding specific-allele immune responses. Most antigens described to date belong to the blood stage, thereby blocking parasite development wi...
متن کاملGenetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملMolecular Evidence on Changing Pattern of Mixed Plasmodium falciparum and P. vivax Infections during Year-Round Transmission of Malaria in Chahbahar, Iran
Mixed malaria infections, Plasmodium falciparum and P. vivax, are suspected to occur at a greater frequency than is detected by conventional light microscopy. In order to determine the year round pattern of transmission and the frequency of mixed infections in malaria endemic area, we carried out a prospective comparison of diagnosis by conventional light microscopy and nested PCR in Chahbahar ...
متن کاملThe utility of Plasmodium berghei as a rodent model for anti-merozoite malaria vaccine assessment
Rodent malaria species Plasmodium yoelii and P. chabaudi have been widely used to validate vaccine approaches targeting blood-stage merozoite antigens. However, increasing data suggest the P. berghei rodent malaria may be able to circumvent vaccine-induced anti-merozoite responses. Here we confirm a failure to protect against P. berghei, despite successful antibody induction against leading mer...
متن کامل